10 мифов о квантовой Вселенной [начало] (4 фото)
Единственные ограничения возникали из ограниченности знаний, измерений и вычислительной мощности.
Все это изменилось чуть более 100 лет назад, когда стало ясно, что чтобы мы ни пропускали через двойную щель, от радиации и фотоэлектрического эффекта до поведения света, то мы можем только предсказать вероятность того, что различные результаты возникнут как следствие квантовой природы нашей Вселенной. Но наряду с этой новой, нелогичной картиной реальности возникло много мифов и заблуждений. Вот что говорит реальная наука о 10 наиболее распространенных из них.
1) Квантовые эффекты возникают только в малых масштабах.
Когда мы думаем о квантовых эффектах, мы обычно думаем об отдельных частицах (или волнах) и странных свойствах, которые они проявляют. Но случаются крупномасштабные макроскопические эффекты, которые по своей природе являются квантовыми.
Проводящие металлы, охлажденные до определенной температуры, становятся сверхпроводниками, в которых сопротивление падает до нуля. Построение сверхпроводящих дорожек, когда магниты поднимаются над ними и движутся вокруг них, никогда не замедляясь, является в наши дни обычным студенческим научным проектом, основанным на квантовых эффектах.
Сверхтекучие жидкости могут быть созданы в больших, макроскопических масштабах, как и квантовые барабаны, которые одновременно вибрируют и не вибрируют. За последние 25 лет было вручено 6 Нобелевских премий за различные макроскопические квантовые явления.
2) Квант всегда означает «дискретный».
Идея о том, что вы можете разделить материю (или энергию) на отдельные порции - или кванты - является важной концепцией в физике, но она не в полной мере охватывает то, что означает, что что-то является «квантовым» по природе. Например: рассмотрим атом. Атомы состоят из атомных ядер со связанными с ними электронами.
Теперь подумайте над этим вопросом: где находится электрон в любой момент времени?
Даже если электрон является квантовой сущностью, его положение неопределенно, пока вы не измерите его. Возьмите много атомов и свяжите их вместе (например, в проводнике), и вы зачастую обнаружите, что, хотя существуют отдельные энергетические уровни, которые занимают электроны, их положения могут буквально быть где угодно в проводнике. Многие квантовые эффекты носят непрерывный характер, и вполне возможно, что пространство и время на фундаментальном квантовом уровне также являются непрерывными.
3) Квантовая запутанность позволяет информации перемещаться быстрее, чем свет.
Вот эксперимент, который мы можем выполнить:
создать две запутанные частицы,
разнести их на большое расстояние друг от друга,
измерить определенные квантовые свойства (например, спин) одной частицы на одном конце,
и мы сможем узнать некоторую информацию о квантовом состоянии другой частицы мгновенно: быстрее, чем скорость света.
Но в этом эксперименте есть одна вещь: никакая информация не передается быстрее скорости света. Все, что происходит, заключается в том, что, измеряя состояние одной частицы, мы ограничиваем возможные результаты для другой частицы. Если кто-то берет и измеряет другую частицу, то у него не будет возможности узнать, что первая частица была измерена, а запутанность была разрушена. Единственный способ определить, была нарушена запутанность или нет, состоит в том, чтобы снова свести воедино результаты обоих измерений: процесс, который может происходить только со скоростью света или медленнее. Никакая информация не может быть передана быстрее, чем свет; это было доказано еще в теореме 1993 года.
4) Суперпозиция имеет фундаментальное значение для квантовой физики.
Представьте, что у вас есть несколько возможных квантовых состояний, в которых может находиться система. Может быть, она может находиться в состоянии «A» с вероятностью 55%, состоянии «B» с вероятностью 30% и состоянии «C» с вероятностью 15%. Однако, когда бы мы ни проводили измерения, мы никогда не увидим соединение этих возможных состояний; мы получим только один результат: «А», «В» или «С».
Суперпозиции невероятно полезны в качестве промежуточных этапов расчета, чтобы определить, какими будут наши возможные результаты (и их вероятности), но мы никогда не сможем измерить их напрямую. Кроме того, суперпозиции не применяются ко всем измеримым параметрам одинаково, так как мы можем иметь суперпозицию импульса частицы, но не ее положения и наоборот. В отличие от запутывания, которое является фундаментальным квантовым явлением, суперпозиция не поддается количественной или универсальной оценке.
5) Нет ничего плохого в том, чтобы выбирать более предпочтительную квантовую интерпретацию.
Физика это все то, что вы можете предсказывать, наблюдать и измерять в этой Вселенной. Тем не менее, в квантовой физике существует множество способов понять, что происходит на квантовом уровне, и все они в равной степени будут согласовываться с экспериментами. Реальность может быть:
ряд квантовых волновых функций, которые мгновенно «коллапсируют» при выполнении измерения,
бесконечный «ансамбль» квантовых волн, где измерение выбирает одного «исполнителя» из ансамбля,
суперпозиция движущихся вперед и назад потенциалов, которые встречаются в «квантовом рукопожатии»,
бесконечное количество возможных миров, соответствующих возможным результатам, где мы просто находимся на одной из траекторий их эволюции,
а также многие другие.
Тем не менее, предпочтение одного толкования другому ничего нам не дает, кроме, возможно, укоренения в наших собственных человеческих предубеждениях. Лучше изучить то, что мы можем наблюдать и измерить в различных физических условиях, которые физически реальны, чем предпочесть интерпретацию, которая не имеет экспериментального преимущества перед другими.